Step 1 . Define K-Means clustering parameters
CREATE TABLE km_settings (
setting_name VARCHAR2(30), setting_value VARCHAR2(30));
BEGIN
INSERT INTO km_settings (setting_name, setting_value) VALUES
(dbms_data_mining.kmns_distance, dbms_data_mining.kmns_euclidean);
INSERT INTO km_settings (setting_name, setting_value) VALUES
(dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
INSERT INTO km_settings (setting_name, setting_value) VALUES (dbms_data_mining.clus_num_clusters, '7');
END;
/
Step 2. Build a K-Means Clustering model
define m_name='km_0425a'
define input_tbl='v_data_training_4_cls'
define rec_id='APP_ID'
BEGIN
DBMS_DATA_MINING.CREATE_MODEL(
model_name => '&m_name',
mining_function => dbms_data_mining.clustering,
data_table_name => '&input_tbl',
case_id_column_name => '&rec_id',
settings_table_name => 'km_settings');
END;
/
Again once the model is built, it is a mining object. We can use Cluster_id() function to calculate cluster members for new data.
select app_id, cluster_id(km_0425a using *) cls from CELL_PHONE_SERVICE_APPS_NEW
select app_id, cluster_id(km_0425a using *) cls from CELL_PHONE_SERVICE_APPS_NEW
2 comments:
Can this be used in SQL Server Management Studio? or in C# (visual studio 2010)? Thanks in advanced.
You may download a graphical tool Oracle Data Miner at
http://www.oracle.com/technetwork/database/options/odm/dataminerworkflow-168677.html
Jay
Post a Comment